Permutations and Combinations
- Factorial Notation:Let n be a positive integer. Then, factorial n, denoted n! is defined as:n! = n(n - 1)(n - 2) ... 3.2.1.Examples:
- We define 0! = 1.
- 4! = (4 x 3 x 2 x 1) = 24.
- 5! = (5 x 4 x 3 x 2 x 1) = 120.
- Permutations:The different arrangements of a given number of things by taking some or all at a time, are called permutations.Examples:
- All permutations (or arrangements) made with the letters a, b, c by taking two at a time are (ab, ba, ac, ca, bc, cb).
- All permutations made with the letters a, b, c taking all at a time are:
( abc, acb, bac, bca, cab, cba)
- Number of Permutations:Number of all permutations of n things, taken r at a time, is given by:
nPr = n(n - 1)(n - 2) ... (n - r + 1) = n! (n - r)! Examples:- 6P2 = (6 x 5) = 30.
- 7P3 = (7 x 6 x 5) = 210.
- Cor. number of all permutations of n things, taken all at a time = n!.
- An Important Result:If there are n subjects of which p1 are alike of one kind; p2 are alike of another kind;p3 are alike of third kind and so on and pr are alike of rth kind,
such that (p1 + p2 + ... pr) = n.Then, number of permutations of these n objects is = n! (p1!).(p2)!.....(pr!) - Combinations:Each of the different groups or selections which can be formed by taking some or all of a number of objects is called a combination.Examples:
- Suppose we want to select two out of three boys A, B, C. Then, possible selections are AB, BC and CA.Note: AB and BA represent the same selection.
- All the combinations formed by a, b, c taking ab, bc, ca.
- The only combination that can be formed of three letters a, b, c taken all at a time is abc.
- Various groups of 2 out of four persons A, B, C, D are:AB, AC, AD, BC, BD, CD.
- Note that ab ba are two different permutations but they represent the same combination.
- Number of Combinations:The number of all combinations of n things, taken r at a time is:
nCr = n! = n(n - 1)(n - 2) ... to r factors . (r!)(n - r)! r! Note:- nCn = 1 and nC0 = 1.
- nCr = nC(n - r)
Examples:i. 11C4 = (11 x 10 x 9 x 8) = 330. (4 x 3 x 2 x 1) ii. 16C13 = 16C(16 - 13) = 16C3 = 16 x 15 x 14 = 16 x 15 x 14 = 560. 3! 3 x 2 x 1
Example:
In how many ways a committee, consisting of 5 men and 6 women can be formed from 8 men and 10 women?
Answer:
Required number of ways= (8C5 x 10C6)= (8C3 x 10C4)
= 11760.
= | 8 x 7 x 6 | x | 10 x 9 x 8 x 7 | |
3 x 2 x 1 | 4 x 3 x 2 x 1 |
Example:
In how many ways can the letters of the word 'LEADER' be arranged?
Answer:
The word 'LEADER' contains 6 letters, namely 1L, 2E, 1A, 1D and 1R.
Required number of ways = | 6! | = 360. |
(1!)(2!)(1!)(1!)(1!) |
Example:
From a group of 7 men and 6 women, five persons are to be selected to form a committee so that at least 3 men are there on the committee. In how many ways can it be done?
Answer:
We may have (3 men and 2 women) or (4 men and 1 woman) or (5 men only).
Required number of ways | = (7C3 x 6C2) + (7C4 x 6C1) + (7C5) | |||||||||||
| ||||||||||||
| ||||||||||||
= (525 + 210 + 21) | ||||||||||||
= 756. |
Example:
How many 3-digit numbers can be formed from the digits 2, 3, 5, 6, 7 and 9, which are divisible by 5 and none of the digits is repeated?Answer:
Since each desired number is divisible by 5, so we must have 5 at the unit place. So, there is 1 way of doing it.
The tens place can now be filled by any of the remaining 5 digits (2, 3, 6, 7, 9). So, there are 5 ways of filling the tens place.
The hundreds place can now be filled by any of the remaining 4 digits. So, there are 4 ways of filling it.
Required number of numbers = (1 x 5 x 4) = 20.
Example:
In how many different ways can the letters of the word 'MATHEMATICS' be arranged so that the vowels always come together?
Answer:
In the word 'MATHEMATICS', we treat the vowels AEAI as one letter.
Thus, we have MTHMTCS (AEAI).
Now, we have to arrange 8 letters, out of which M occurs twice, T occurs twice and the rest are different.
Number of ways of arranging these letters = | 8! | = 10080. |
(2!)(2!) |
Now, AEAI has 4 letters in which A occurs 2 times and the rest are different.
Number of ways of arranging these letters = | 4! | = 12. |
2! |
Required number of words = (10080 x 12) = 120960.
0 comments:
Post a Comment